DIAGONAL OPERATORS, S-NUMBERS AND BERNSTEIN PAIRS

ASUMAN G. AKSOY, GRZEGORZ LEWICKI

Abstract. Replacing the nested sequence of "finite" dimensional subspaces by the nested sequence of "closed" subspaces in the classical Bernstein lethargy theorem, we obtain a version of this theorem for the space $\mathcal{B}(X,Y)$ of all bounded linear maps. Using this result and some properties of diagonal operators, we investigate conditions under which a suitable pair of Banach spaces form an exact Bernstein pair. We also show that many "classical" Banach spaces, including the couple $(L_p[0,1],L_q[0,1])$ form a Bernstein pair with respect to any sequence of s-numbers (s_n) , for $1 and <math>1 \le q < \infty$.

1 Introduction

s-Numbers. Let X and Y be Banach spaces and $\mathcal{B}(X,Y)$ denote the space of all bounded linear maps from X into Y. According to A. Pietsch [10, 11], a map s which to each bounded linear map T from one Banach space to another such space assigns a unique sequence $(s_n(T))$ is called a s-function if for all Banach spaces W, X, Y, Z:

i)
$$||T|| = s_1(T) \ge s_2(T) \ge ... \ge 0$$
 for all $T \in \mathcal{B}(X, Y)$

ii)
$$s_n(S+T) \leq s_n(S) + ||T||$$
 for all $S, T \in \mathcal{B}(X,Y)$, and all $n \in \mathbb{N}$

iii)
$$s_n(RST) \le ||R||s_n(S)||T||$$
 for all $T \in \mathcal{B}(X,Y), S \in \mathcal{B}(Y,Z)$ and $R \in \mathcal{B}(Z,W)$

iv) If
$$T \in \mathcal{B}(X,Y)$$
 and $rank(T) < n$, then $s_n(T) = 0$

v)
$$s_n(I) = 1$$
 for all $n \in \mathbb{N}$,

where *I* is the identity map of $l_n^2 = \{x \in l_2 : x_i = 0 \text{ if } i > n\}.$

 $s_n(T)$ is called the *n*-th *s*-number of the operator T.

Now we turn to some special s-numbers. Their definitions are:

-Approximation numbers :

$$a_n(T) := inf\{||T - S|| : rank(S) < n\}$$
 where $T, S \in \mathcal{B}(X, Y)$.

-Gelfand numbers:

$$c_n(T) := \inf\{||TJ_M^X|| : codim(M) < n\},$$

where $T \in \mathcal{B}(X,Y)$ and J_M^X is the embedding from M into X.

- Kolmogorov numbers (or n-widths):

$$d_n(T) := inf\{||Q_N^Y T|| : dim(N) < n\}$$

where $T \in \mathcal{B}(X,Y)$ and Q_N^Y is the canonical map from Y to Y/N. For relations between several kind of s-numbers we refer to [10, 11].

Bernstein's "Lethargy" Theorem [1] Let $V_1 \subset V_2$ be a nested sequence of distinct finite dimensional vector subspaces of a Banach space X. Let (ε_n) be a decreasing sequence of

nonnegative numbers tending to 0. Then there exist $x \in X$ such that $dist(x,V_n) = \varepsilon_n$ for n = 1, 2, ...

Besides being a very important result of the constructive theory of functions, Bernstein's lethargy theorem can also be applied to the theory of quasi-analytic functions of several complex variables. For this and other applications of this theorem see [12] and [13]. (See also [6, 7, 8, 9] where the cases of F-spaces and Modular spaces are considered.)

The aim of this paper is to investigate the following

Problem. Given Banach spaces X and Y and a sequence of s-numbers (s_n) is it true that for any decreasing sequence of nonnegative real numbers $\varepsilon_n \to 0$, there exist $T \in \mathcal{B}(X,Y)$ and a constant M depending only on T such that for every $n \in \mathbb{N}$

$$\varepsilon_n \le s_n(T) \le M\varepsilon_n.$$
(1.1)

Two Banach spaces X and Y satisfying (1.1) will be called a Bernstein pair with respect to the sequence of s-numbers (s_n) . We denote Bernstein pairs by (X,Y). If M=1, then (X,Y) is called an exact Bernstein pair.

Our goal is to show that "classical" Banach spaces form Bernstein pairs, with respect to any sequence of s-numbers. This is quite a different approach from that of [4] in which Bernstein pairs are defined only with respect to approximation numbers. Moreover we replace classical l_p -spaces with more general sequence spaces. The main results of this paper are Theorems 2.9 and 3.2.

In the sequel the following notion will be needed.

Diagonal Operators. Let X and Y be Banach spaces. Let $\{x_n\} \subset X$ and $\{y_n\} \subset Y$ be linearly independent sequences. An operator $D_{\varepsilon} \in \mathcal{B}(X,Y)$ with $D_{\varepsilon}x_n = \varepsilon_n y_n$ where (ε_n) is some fixed scalar sequence, is called a diagonal operator determined by (ε_n) , with respect to (x_n) and (y_n) . The set of all diagonal operators from X to Y will be denoted by $\mathcal{D}(X,Y)$.

2 Diagonal Operators and Approximation Numbers

Let X be a normed space and let V_n be a closed subspace of X. The set of all projections from X onto V_n will be denoted by $\mathcal{P}(X,V_n)$. We start with the following version of the Bernstein "Lethargy" theorem.

Theorem 2.1 [8] Let $V_1 \subset V_2 \subset ...$ be a nested sequence of distinct closed subspaces of a Banach space X. Assume that $P_n \in \mathcal{P}(X, V_n)$ are so chosen that for every $n \in \mathbb{N}$, there exits $v_n \in V_{n+1} \setminus V_n$ such that

$$P_i v_n = 0 \text{ for } i = 1, 2, 3, ..., n.$$
 (2.1)

Let (ε_n) be a decreasing sequence of nonnegative numbers tending to 0. Then, there exists an $x \in X$ with $||x - P_n x|| = \varepsilon_n$ for n = 1, 2, ...

Corollary 2.2 Let X, V_n, P_n and (ε_n) be as in Theorem 2.1. Suppose that there is M > 0 such that $||I - P_n|| \le M$ for n = 1, 2, ... Then there exists $x \in X$ such that

$$\varepsilon_n/M \le dist(x, V_n) \le \varepsilon_n.$$
 (2.2)

Proof. The proof is a simple consequence of Theorem 2.1 and the inequality

$$||x-P_nx|| \leq ||I-P_n|| dist(x,V_n).$$

Next we consider Banach spaces X, Y and the space $\mathcal{B}(Y, X)$ and state Theorem 2.1 for $\mathcal{B}(Y, X)$.

Proposition 2.3 Let X, V_n, P_n and (ε_n) be as in Theorem 2.1. Then for every Banach space Y, there exists $L \in \mathcal{B}(Y,X)$ such that

$$||L - W_n L|| = \varepsilon_n \text{ for } n = 1, 2, ...,$$
 (2.3)

where $W_n \in \mathcal{P}(\mathcal{B}(Y,X),\mathcal{B}(Y,V_n))$ is defined by:

$$W_n L = P_n \circ L. \tag{2.4}$$

Proof. We need to show that for every $n \in N$, there exists $L_n \in \mathcal{B}(Y, V_{n+1}) \setminus \mathcal{B}(Y, V_n)$ such that $W_i L_n = 0$ for i = 1, 2, ..., n. To do this, take $v_n \in V_{n+1} \setminus V_n$ such that $P_i v_n = 0$ for i = 1, 2, ..., n. Set $L_n y = f(y) v_n$, where $f \in Y^* \setminus \{0\}$. Then, for every $y \in Y$ and i = 1, 2, ..., n,

$$W_i(L_n y) = (P_i L_n)y = P_i(f(y)v_n) = f(y)P_i v_n = 0.$$

Notation 2.4 *For any* $m \in \mathbb{N}$, *set*

$$V_m = \{(x_n) \in \mathbb{K}^{\mathbb{N}} : x_n = 0 \text{ for } n > m\} \text{ and } V = \bigcup_{m=1}^{\infty} V_m.$$
 (2.5)

Let $Y_o = (V, ||\cdot||_1)$ and $X_o = (V, ||\cdot||_2)$. Taking completions one can assume that X_o and Y_o are Banach spaces. Throughout this paper we will assume the following "order preserving" condition on the norm of X_o :

If
$$|x_i| \le |y_i|$$
 for $i = 1, 2, ...,$ then $||x||_2 \le ||y||_2$ for all $x, y \in X_o$; (2.6)

and

$$||e_i||_1 = ||e_i||_2 = 1$$
 for $i = 1, 2,$ (2.7)

Note that for a Banach space which satisfies (2.6), one also has

$$||P_n||_2 = ||I - P_n||_2 = 1 \text{ for any } n \in \mathbb{N},$$
 (2.8)

where P_n is a projection from X_o onto V_n defined by $P_n x = (x_1, x_2, ... x_n, 0, 0,)$.

Corollary 2.5 For any decreasing sequence (ε_n) of nonnegative numbers tending to zero, there exists an $L \in \mathcal{B}(Y_o, X_o)$ $[L \in \mathcal{D}(Y_o, X_o)$ respectively] such that

$$dist(L, \mathcal{B}(Y_o, V_n)) = \varepsilon_n$$

$$[dist(L, \mathcal{D}(Y_o, V_n)] = \varepsilon_n]$$
, respectively for $n = 1, 2, 3...$

Proof. Since the case of linear operators follows from (2.2), (2.4) and (2.8) and Corollary 2.2, we restrict ourselves to the case of diagonal operators. Define for $n \in \mathbb{N}$, and $L \in \mathcal{D}(Y_o, X_o)$, $W_n(L) = P_n \circ L$. It is clear that W_n is a projection from $\mathcal{D}(Y_o, X_o)$ onto $\mathcal{D}(Y_o, V_n)$. Moreover, by (2.8), $||I - W_n|| = 1$. Now for $n \in \mathbb{N}$, define $L_n \in \mathcal{D}(Y_o, V_{n+1}) \setminus \mathcal{D}(Y_o, V_n)$ by $L_n x = x_{n+1} e_{n+1}$. It is clear that $W_i(L_n) = 0$ for i = 1, 2, ..., n. Hence by Theorem 2.1, there is an $L \in \mathcal{D}(Y_o, X_o)$ such that

$$\varepsilon_n = ||L - W_n L|| = dist(L, \mathcal{D}(Y_o, V_n)).$$

Consider for $n \in \mathbb{N}$, (n-1)-dimensional subspace V_{n-1} and an arbitrary $L \in \mathcal{B}(Y_o, X_o)$, then one always has:

$$dist(L, \mathcal{D}(Y_o, V_{n-1})) \ge dist(L, \mathcal{B}(Y_o, V_{n-1})) \ge a_n(L). \tag{2.9}$$

Now for the following two propositions, we investigate conditions under which

$$a_n(L) = dist(L, \mathcal{D}(Y_o, V_{n-1})) \text{ holds for } n = 1, 2, ...$$
 (2.10)

Proposition 2.6 The equality (2.10) holds true when $X_o = Y_o$, for any $D_{\varepsilon} \in \mathcal{D}(X_o)$.

Proof. For $n \in \mathbb{N}$, let D_n and I_n denote the operators D_{ε} and I restricted to V_n , then from (2.6) we have $||D_n^{-1}|| = \varepsilon_n^{-1}$. Note that

$$1 = a_n(I_n) = a_n(D_n^{-1} \circ D_n) < ||D_n^{-1}|| a_n(D_n) = \varepsilon_n^{-1} a_n(D_n).$$

Therefore

$$a_n(D_{\varepsilon}) \ge a_n(D_n) \ge \varepsilon_n = ||D_{\varepsilon} - W_{n-1}(D_{\varepsilon})|| = dist(D_{\varepsilon}, \mathcal{D}(X_o, V_{n-1}))$$

which together with (2.9) gives the desired equality.

We need the following lemma due to V. D. Milman [10, 11] to prove the Proposition 2.8.

Lemma 2.7 Let V be any subspace of $l_{\infty}^{(m)}$ such that codim(V) < n. Then there exists $x \in V$, with ||x|| = 1, such that

$$card\{k : |x_k| = 1\} \ge m - n + 1.$$

Proposition 2.8 The equality (2.10) holds true for any diagonal operator $D_{\varepsilon} \in \mathcal{D}(l_{\infty}, X_o)$ or $D_{\varepsilon} \in \mathcal{D}(c_o, X_o)$ if the norm in X_o is symmetric.

Proof. We only need to verify $a_n(D_{\varepsilon}) \geq dist(D_{\varepsilon}, \mathcal{D}(l_{\infty}, V_{n-1}))$. First observe that for any $D_{\varepsilon} \in \mathcal{D}(l_{\infty}, X_o)$ such that $\varepsilon_1 \geq \varepsilon_2 \geq \geq 0$,

$$dist(D_{\varepsilon}, \mathcal{D}(l_{\infty}, V_{n-1})) = ||(0, ..., \varepsilon_n, \varepsilon_{n+1}, ...)||_2.$$

Let $A: l_{\infty} \to X_o$ be an arbitrary operator of rank $\leq n-1$, say $A = \sum_{j=1}^{n-1} f_j(\cdot)x_j$ where $f_j \in l_{\infty}^*$ and $x_j \in X_o$. Take $m \geq n$ and define

$$S_m = \{ y \in l_{\infty}^{(m)} : f_j(y) = 0 \text{ for } j = 1, 2, ..., n-1 \}.$$

Then S_m is a subspace of $l_{\infty}^{(m)}$ of codimension $\leq n-1$. By Lemma 2.7 there exists $y^o \in S_m$ with $||y^o|| = 1$ and indices $j(1) < j(2) < ... < j(m-n+1) \in \{1,2,...,m\}$ such that $||y^o|| = 1$ for $1 \leq i \leq m-n+1$. Extending y^o to l_{∞} by setting $y^o_j = 0$ for j > m, we obtain

$$||D_{\varepsilon} - A|| \ge ||(D_{\varepsilon} - A)y_o||_2 = ||D_{\varepsilon}y_o||_2$$

=
$$\|(\varepsilon_j y_{j(1)})_{j(1)}, \dots, (\varepsilon_{j(m-n+1)} y_{j(m-n+1)})_{j(m-n+1)}, 0, \dots)\|_2$$
.

By the ordering property (2.6) and symmetry of $||\cdot||_2$, the last term above is greater or equal to

$$||0,0,...,\varepsilon_{j(1)},\varepsilon_{j(2)},...,\varepsilon_{j(m-n+1)},0,...||_2 \ge ||0,0,...,0,\varepsilon_n,\varepsilon_{n+1},...,\varepsilon_{m-n+1},0,...||_2.$$

Since A and m were arbitrary, $a_n(D_{\varepsilon}) \ge ||(0,...,\varepsilon_n,\varepsilon_{n+1},....)||_2$.

Note that Proposition (2.8) is a generalization of Theorem 1.8 of [4]. In Proposition (2.8) we replace l_p -spaces of [4] by arbitrary symmetric spaces. Also, in [5] or [10, p. 159] it is shown that, if $1 < q < p < \infty$ and $T: l_p \to l_q$ is a diagonal operator determined by (ε_n) , then

$$a_n(T) = (\sum_{k=n}^{\infty} |\varepsilon_k|^r)^{1/r} \text{ where } r^{-1} + p^{-1} = q^{-1}.$$
 (2.11)

By the Hölder inequality applied to r/q and p/q one can show that (2.10) also holds true in this case.

The following theorem gives a characterization of spaces which can form Bernstein pairs with respect to approximation numbers.

Theorem 2.9 The following pairs of Banach spaces form exact Bernstein pairs with respect to the sequence of approximation numbers (a_n) .

- **a.** (X_o, X_o) , where X_o is defined in Notation 2.4.
- **b.** (c_o, X_o) and (l_∞, X_o) , provided that the norm on X_o is symmetric.
- **c.** (X_o, l_1) , provided X_o is reflexive.

Proof. a. follows from Cor. 2.5 and Prop. 2.6;

b. follows from Cor. 2.5 and Prop. 2.8.

To prove **c**, first note that if X_o satisfies condition (2.6) so does X_o^* ; therefore, by **b**, (c_o, X_o^*) is an exact Bernstein pair. Now using the well known fact [11, p. 239] that for any compact operator T from X to Y, $a_n(T) = a_n(T^*)$, we conclude that $(X_o, l_1) = (X_o^{**}, c_o^*)$ is a Bernstein pair.

3 S-numbers and Bernstein Pairs

We start with a simple lemma, which proof will be omitted.

Lemma 3.1 Let X,Y, and Z be Banach spaces with $X \subset Z$. Let $T \in \mathcal{B}(X,Y)$ and P be a projection from Z onto X. Then

$$s_n(T) \leq s_n(T \circ P) \leq s_n(T)||P||.$$

The following theorem states the conditions needed on an arbitrary s-number in order (X_o, X_o) to become a Bernstein pair with respect to any sequence of s-numbers (s_n) .

Theorem 3.2 Suppose for a sequence of s-numbers (s_n) , there exists C > 0 such that

$$s_n(I:(V_n,||\cdot||_2)\to (V_n,||\cdot||_2))\geq C$$

for every n, where V_n is a subspace of X_o defined as in (2.5). Then (X_o, X_o) is a Bernstein pair with respect to (s_n) .

Proof. Fix a decreasing sequence (ε_n) of positive numbers tending to zero. Consider the diagonal operator $D_{\varepsilon} \in \mathcal{D}(X_o)$ constructed as in Proposition 2.6 satisfying $a_n(D_{\varepsilon}) = \varepsilon_n$ for $n = 1, 2, 3, ...; D_n$ will denote the operator D_{ε} restricted to V_n . Then $||D_n^{-1}|| = \varepsilon_n^{-1} = (a_n(D_{\varepsilon}))^{-1}$. Next observe that

$$C \le s_n(I: V_n \to V_n) = s_n(D_n^{-1} \circ D_n) \le ||D_n^{-1}|| s_n(D_n).$$

But by Lemma 3.1,

$$s_n(D_n) = s_n(D_{\varepsilon} \circ P_n) \le s_n(D_{\varepsilon}) ||P_n||.$$

Therefore $C \le \varepsilon_n^{-1} s_n(D_{\varepsilon})$. On the other hand $s_n(D_{\varepsilon}) \le a_n(D_{\varepsilon}) = \varepsilon_n$.

Notice that the condition stated on the s-numbers in Theorem 3.2 is not an artificial one. This condition is satisfied by Approximation, Gelfand and Kolmogorov numbers, as stated in the next corollary.

Corollary 3.3 (X_o, X_o) is an exact Bernstein pair with respect to (d_n) and (c_n) .

Proof. (X_o, X_o) is an exact Bernstein pair with respect to (d_n) because $d_n(I: V_n \to V_n) = 1$. Since $c_n(T) = d_n(T^*)$ for any linear operator [11, p. 95], it is also an exact Bernstein pair with respect to (c_n) .

The next proposition will permit us to construct some examples of Bernstein pairs. We omit a routine proof.

Proposition 3.4 Suppose (X,Y) is a Bernstein pair with respect to (s_n) . Suppose that a Banach space W contains an isomorphic and a complementary copy of X, and a Banach space V contains an isomorphic copy of Y. Then (W,V) is a Bernstein pair with respect to (s_n) .

Corollary 3.5 For $1 and <math>1 \le q < \infty$, the couple $(L_p[0,1], L_q[0,1])$ form a Bernstein pair with respect to any sequence of s-numbers (s_n) .

Proof. The corollary follows from the fact that (l_2, l_2) is a Bernstein pair with respect to any sequence of s-numbers (s_n) [11] and the fact that for every p, $1 \le p < \infty$, $L_p[0, 1]$ contains a subspace isomorphic to l_2 and complemented in $L_p[0, 1]$ for p > 1 [14, p. 85].

Corollary 3.6 i) Let Y be a separable Banach space and assume that (X,Y) is a Bernstein pair with respect to (s_n) . Then (X,l_∞) is a Bernstein pair with respect to (s_n) .

ii) Let X^* be a separable Banach space, assume (X,Y) is a Bernstein pair with respect to (a_n) . Then (X,c_o) and (l_1,X^*) are Bernstein pairs with respect to (a_n) .

Proof. i) follows from the fact that every separable Banach space Y is linearly isometric to a subspace of l_{∞} .

For ii) observe that (X, l_{∞}) is a Bernstein pair by i), then apply Lemma 4.10 of [4] to conclude that (X, c_o) is a Bernstein pair. If T is a compact operator, then $a_n(T) = a_n(T^*)$ for n = 1, 2, ..., will give the assertion for (l_1, X^*) .

Corollary 3.7 i) Suppose (c_o, c_o) is a Bernstein pair with respect to (s_n) . Then (X,Y) is a Bernstein pair with respect to (s_n) , provided X and Y each contain an isomorphic copy of c_o , and X is separable.

ii) Suppose (l_1, l_1) is a Bernstein pair with respect to (s_n) . Then (X, Y) is a Bernstein pair with respect to (s_n) provided X is a nonreflexive subspace of $L_1[0, 1]$ containing a isomorphic copy of l_1 and Y containing a isomorphic copy of l_1 .

Proof. i) follows from Sobczyk's theorem [2, p. 71] which states that if a separable X contains an isomorphic copy of c_o , then X contains a complemented copy of c_o .

ii) follows from the Pełczyński- Kadeč theorem [2, p. 94], which states that if X is a nonreflexive subspace of $L_1[0,1]$, then X contains a subspace complemented in $L_1[0,1]$ and isomorphic to l_1 .

Corollary 3.8 For 0 < q < p < 2, $(l_p, L_q[\Omega, \mu])$ is a Bernstein pair with respect to (a_n) , (c_n) and (d_n) .

Proof. It is known that [14, p. 94], if 0 < q < p < 2 the real space $L_q[\Omega, \mu]$ contains a subspace isometric to l_p . Applying Theorem 3.2 to $X_o = l_p$, we see that $(l_p, L_q(\Omega, \mu))$ is a Bernstein pair with respect to the given s-numbers.

Corollary 3.9 i) If (l_{∞}, l_{∞}) is a Bernstein pair with respect to (s_n) , and X and Y contain isomorphic copies of l_{∞} , then (X,Y) form a Bernstein pair with respect to (s_n) .

ii) Let $L_f(\Omega, \Sigma, \mu), L_g(\Omega, \Sigma, \mu)$ be Orlicz spaces with nonatomic measure μ , where f, g do not satisfy Δ_2 -condition if $\mu(\Omega)$ is infinite, and in case $\mu(\Omega)$ is finite, the Δ_2 -condition at infinity is not satisfied. Here the norm on Orlicz spaces could be either Orlicz or Luxemburg norm. If (l_{∞}, l_{∞}) is a Bernstein pair with respect to (s_n) , then $(L_f(\Omega, \Sigma, \mu), L_g(\Omega, \Sigma, \mu))$ form an exact Bernstein pair with respect to (s_n) .

Proof. i) By a theorem of Phillips [2, p. 21], if X and Y contain an isomorphic copy of l_{∞} , then X, Y contain one-complemented copies of l_{∞} .

ii) From [3, cor.2] we know that if f does not satisfy a suitable Δ_2 -condition, then L_f has an isometric complemented copy of l_{∞} .

References

- [1] S. N. Bernstein, Collected Works II, Acad. Nauk SSSR, Moscow, 1954 (Russian).
- [2] J. Diestel, Sequences and Series in Banach Spaces, vol. 92, Springer Verlag, Graduate Text in Math., New York, 1983.
- [3] H. Hudzik and Ch. Shutao, Complemented copies of l₁ in Orlicz Spaces, Math. Nachr. 159 (1992), 299-309.
- [4] C. V. Hutton, J. S. Morrell and J. R. Retherford, *Diagonal Operators, Approximation Numbers and Kolmogoroff Diameters*, J. Approx. Theory **16** (1976), 48-80.
- [5] P. Johnson, Thesis, University of Michigan, 1973.
- [6] W. M. Kozłowski, Modular Function Spaces, Marcel-Dekker, New York, 1988.
- [7] W. M. Kozłowski and G. Lewicki, *Analyticity and Polynomial Approximation in Modular Function Spaces*, J. Approx. Theory **58** (1989), 15-35.
- [8] G. Lewicki, Thesis, Jagiellonian University, 1987.
- [9] G. Lewicki, Bernstein's "Lethargy" Theorem in Metrizable Topological Linear Spaces, Mh. Math. 113 (1992), 213-226.
- [10] A. Pietsch, Operator Ideals, VEB Deutscher Verlag der Wissenschaften, Berlin, 1979.
- [11] A. Pietsch, *Eigenvalues and s-Numbers*, Studies in Advanced Mathematics, vol. 13, Cambridge Univ. Press, Cambridge, 1987.
- [12] W. Pleśniak, On a theorem of S. N. Bernstein in F-Spaces, Uniw. Jagiellon., Prace Mat. 20 (1979), 7-16.
- [13] W. Pleśniak, Quasianalytic functions in the sense of Bernstein, Dissertationes Math. 147 (1977), 1-70.
- [14] P. Wojtaszczyk, Banach Spaces for Analysts, Studies in Advanced Mathematics, vol. 25, Cambridge Univ. Press, Cambridge, 1991.

Asuman G. Aksoy
Department of Mathematics Claremont McKenna College
Claremont - CA, 91711
USA

E-mail address: Aaksoy@cmcvax.claremont.edu

Grzegorz Lewicki
Department of Mathematics
Jagiellonian University
Reymonta 4 - 30-059 Kraków
POLAND

E-mail address: lewicki@im.uj.edu.pl